Fuel cells are a type of electrochemical cell that converts the chemical energy of a fuel into electricity through an electrochemical reaction of hydrogen and oxygen. Fuel cells are often referred to as “hydrogen-oxygen” or “oxygen-hydrogen” fuel cells because they use these two gases as reactants. Fuel cells are used in a variety of applications, including powering vehicles, generating electricity for homes and businesses, portable electronics, stationary power, and providing backup power for critical systems. Fuel cell stacks are an essential component of fuel cell systems, as they are responsible for generating the electrical current. 

Fuel cells are classified according to the type of electrolyte they use. The three most common types of fuel cells are alkaline fuel cells, proton exchange membrane fuel cells, and direct methanol fuel cells. Fuel cell stacks typically consist of a stack of proton exchange membrane (PEM) fuel cells that are connected in series or parallel, with each cell containing two electrodes (an anode and a cathode) separated bn electrolyte. The anode and cathode react with hydrogen and oxygen to produce water, heat, and electricity. Hydrogen ions flow through the electrolyte from the anode to the cathode, and electrons flow through an external circuit from the anode to the cathode. This flow of electrons generates an electric current that can be used to power devices such as electric motors.

Green hydrogen is a type of hydrogen produced from renewable sources, such as wind or solar power. Green hydrogen can be used in fuel cells to generate clean energy. Fuel cells have the potential to play a significant role in the transition to a low-carbon economy, as they are a clean and efficient way to generate electricity. Fuel cells are an attractive alternative to traditional combustion engines because they are much more efficient and produce no emissions, other than water vapor. Fuel Cells also have a longer lifespan than petrol or diesel engines. Fuel cell stacks are a key component of a clean energy future.

X